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The Space Simulator is a 294-processor Beowulf cluster with theoretical peak
performance just below 1.5 Teraflop/s. It is based on the Shuttle XPC SS51G
mini chassis. Each node consists of a 2.53 GHz Pentium 4 processor, 1 Gb of
333 MHz DDR SDRAM, an 80 Gbyte Maxtor hard drive, and a 3Com 3C996B-T
gigabit ethernet card. The network is made up of a Foundry FastIron 1500 and 800
Gigabit Ethernet switch. Each individual node cost less than $1000, and the entire
system cost under $500,000. The cluster achieved Linpack performance of 665.1
Gflop/s on 288 processors in October 2002, making it the 85th fastest computer in
the world according to the 20thTOP500 list. Performance has since improved to
757.1 Linpack Gflop/s. In this paper we describe the design, implementation and
performance of the cluster, as well as some scientific application results obtained
with the machine.

1 Introduction

The Space Simulator [1] is our third generation Beowulf cluster. The first was Loki [2],
which was constructed in 1996 from 16 200 MHz Pentium Pro processors for $50k.
Loki was among the earliest generation of Beowulf clusters [3], and was the first to be
recognized with the Gordon Bell price/performance award [4]. Loki was followed by
the Avalon cluster [5], which used 144 alpha processors and cost about $300k. Avalon
also won a Gordon Bell price/performance prize [6] and was ranked as the 113th fastest
computer in the world in June 1998 [7]. The Space Simulator follows the same basic
architecture as our previous machines, but is the first to use Gigabit Ethernet as the
network fabric, and requires significantly less space than a cluster using typical ATX
sized cases.

The process by which we designed the machine and selected components is briefly
described in section 2.1. We also discuss the way we installed Linux on each proces-
sor, and the power consumption and reliability of the cluster in sections 2.2 and 2.4.
We mention the software environment of the cluster and several of the software tools
that we have developed in section 3. The CPU and network performance of the cluster
on a variety of benchmarks is explored in section 4. We then discuss the particular as-
trophysics applications the cluster was designed for in section 5. We conclude with a
comparison of the capabilities of the Space Simulator with the similar architecture of
the Loki cluster from exactly six years prior.

2 Zen and the Art of Beowulf

Instruction #1 — Assembly of Beowulf requires great peace of mind.
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Fig. 1. The Space Simulator resides on five sets of 14x48 inch wire shelves with 86 inch posts.
Each rack holds 55 processing nodes, in 11 rows of 5 nodes each. Shown here are portions of
the front two racks. The additional three racks are located behind these, facing in the opposite
direction. This results in the air heated by the systems being exhausted into the channel between
the rows of shelves. The aisle between the rows of shelves is 44 inches wide, resulting in an
overall width of 6 feet and a length of 12 feet
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Fig. 2. This image shows MPG in the area between the rows of processing nodes. In the picture
you can see a power strip with 10 power cords which supplies the power for one shelf of nodes,
as well as the blue Gigabit Ethernet cables connected to each node
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Fig. 3. A front view of the Space Simulator which shows the rack containing the two Foundry
Gigabit Ethernet switches. The fiber trunk between the two switches are the orange cables in
the picture. The 224 ethernet cables attached to the lower switch obscures the upper half of the
Foundry 1500 switch, while the Foundry 800 switch is mounted on the top portion of the rack
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2.1 Designing and Building the Cluster

It is possible to enumerate a set of guidelines about how to construct a Beowulf, filled
with details about disks and CPUs and network performance. However, since the com-
ponents available change so rapidly, anything more than general statements about de-
sign become stale after a month or two.

The funds to purchase the Space Simulator became unexpectedly available in mid-
July of 2002. Fiscal constraints required the system to be delivered by September 31.
This left little time for benchmarking systems and testing components, and the architec-
ture of the Space Simulator was defined by mid-August of 2002, based on the Shuttle
XPC chassis suggested by R. Fryer of BEOMAX.

Our goal was to obtain a computer which would obtain the highest performance
possible on the astrophysics codes we wanted to run, within the budget we were al-
loted. It had to be delivered within one month. The machine also had to be reliable and
maintainable enough that our very limited system administration resources would be
capable of keeping the machine operational.

The power constraints were contained mostly in the amount of cooling available in
our machine room. An upgrade to the cooling system would have been very expensive
and take a long time. We estimated the amount of cooling capacity available would limit
the cluster to about 35 kW of power dissipation.

There were also constraints on the number of amps available through our power
distribution unit. To maximize the power available, one of our specifications required
the use of power factor corrected (PFC) power supplies. Typical PC power supplies we
measured had a power factor of .66 or less, which meant that current loads were higher
than necessary. PFC power supplies have a power factor of 0.99, placing the voltage
and current in phase and maximizing the efficiency of the power delivery system.

Table 1.Space Simulator architecture and price (September, 2002). The total cost per node was
$1646, with $728 (44%) of that figure representing the Network Interface Cards and Ethernet
switches

Qty. Price Ext. Description

294 280 82,320Shuttle SS51G mini system (bare)
294 254 74,676Intel P4/2.53GHz, 533MHz FSB, 512k cache
588 118 69,384512Mb DDR333 SDRAM (1024Mb per node)
294 95 27,9303com 3c996B-T Gigabit Ethernet PCI card
294 83 24,402Maxtor 4K080H4 80Gb 5400rpm Hard Disk
294 35 10,290Assembly Labor/Extended Warranty

4,000Cat6 Ethernet cables
3,300Wire shelving/switch rack
1,378Power strips

1 186,175Foundry FastIron 1500+800, 304 Gigabit ports
Total $483,855 $1646 per node 5.06 Gflop/s peak per node
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Given that power and space limited us to the neighborhood of 300 processors, we
were able to afford a large gigabit ethernet switch. It is possible that if we were able to
cool more processors we might have thought harder about ways to connect the machines
together more cheaply (with a tree of trunked 36-port 3com switches, for example),
which would have allowed a larger machine, albeit with a more complex topology.
However, since the cooling constraint existed, it made the decision to spend over 40%
of our budget on the network easier.

We obtained quotes for clusters from several manufacturers. While one can argue
the specifics of the value of extras typically included in such clusters (high-performance
interconnects, dual-CPU motherboards, system management features), we estimated
that a “commercial” solution would provide about 50% of the performance of what we
could build ourselves, for the same amount of money. For many customers, this would
be an acceptable markup. Certainly, it is a vast improvement over the factor of 10 differ-
ence that was typical between a self-built Beowulf cluster and the available commercial
solutions 5 years ago. Some would say that the biggest advantage to a commercial solu-
tion is less risk that something will not work. The less tangible price you pay is that the
hardware typically lags somewhat behind the state-of-the-art. This is sensible, in that
it takes some time to integrate a commercial system and thoroughly test the interop-
erability of the components. However, even commercial solutions are not perfect, and
it is inevitable that some time will need to be spent identifying problems which have
developed during transport of the machine from the factory, or fixing software problems
that are only discovered once production computing begins.

The second major factor in our decision to build the system ourselves was that we
were not confident that any of the cluster vendors could deliver a system with only one
month lead time, especially at the end of the government fiscal year. Given this time
constraint, we were prepared to actually buy parts and assemble the computing nodes
ourselves if there was no other way to meet the delivery deadline. Fortunately a number
of resellers were willing to construct the nodes to our specifications (see Table 2.1) and
deliver the systems on time.

Deciding on exactly what to buy was not a simple process. Resellers would only
sell in large volumes, and it proved impossible to obtain a prototype Shuttle system due
to organizational bureaucracy. In the end, several conventional ATX systems with both
P4 and Athlon processors, using DDR SDRAM and RDRAM were purchased through
normal procurement channels, and a Shuttle mini system was bought by one of the
authors using his own credit card. Using these prototypes, we were able to determine
that our codes ran faster on the P4 systems, the RDRAM did not improve the results
enough to justify its cost, and that the 3com ethernet card performed much better than
other cards in the Shuttle systems.

We wrote a detailed specification for the purchase, and it was submitted for bids on
August 15. On August 29, MA Labs was awarded the contract for the processing nodes,
and Integrity Networking Systems was awarded the contract for the Foundry switches.

We requested that 16 systems ship as soon as possible, with express delivery, so
that we could test the actual components being used before the entire cluster was as-
sembled. Systems began to arrive on September 12. We discovered some performance
inconsistencies in these systems that were traced to the fact that the CPU temperatures
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were much hotter than the prototype system. After disassembling one of the systems, it
was determined that there was no heat sink compound between the processor die and
the heat pipe. This was pointed out to the vendor, who corrected the problem on the
remaining systems. The final processing nodes and the Ethernet switches arrived on
September 26.

Our assembly task was simply to unpack the nodes and plug in the power and ether-
net cables, and then remotely install the OS. The most labor intensive part of the whole
process was unpacking the cat6 ethernet cables. The only cat6 cables we could find
were manufactured by Belkin, and were coiled in their packaging very tightly, which
made them difficult to unravel, and prone to tangling with other cables. An useful lesson
re-learned was to clearly label the cables on each end with the processor number before
plugging them in to the nodes and the switches.

On September 30, a Linpack result of 430 Gflop/s was obtained on 208 processors.
This improved to 527 Gflop/s on 240 processors by Oct. 5, 622 Gflop/s on 272 proces-
sors on Oct. 16, and our TOP500 result of 665.1 Gflop/s on 288 processors on October
30.

2.2 Space and Power consumption

Table 2.Power consumption for various cluster configurations running the parallel N-body code.
Note that power figures include power consumption of NIC and network switch. The P4 figures
listed in column three represent the higher power consumed by the previous generation of proces-
sors. The P4 figures in column 5 are for the Space Simulator, and the higher performance there is
primarily due to extra optimization from the Intel icc compiler vs gcc used for column 3

Processor Athlon P4 P3 P4 TM5600 TM5800

Clock (MHz) 1800220011332530 667 933
Performance

(Mflop/s) 952 656 595 1357 298 373
Power (watts/proc) 160 130 70 125 22 24
Power efficiency
(Mflop/s/watt) 5.95 5.05 8.5 10.8 13.5 15.5

The entire cluster consumes about 35 kilowatts of power while under load. This
falls to 21 kilowatts when idle. The maximum power consumption we have measured
on a processing node is 110 watts, while running the Linpack benchmark The cost of
electricity for the machine works out to about $30k per year. With space charges at
Los Alamos of about $50 per square foot, the charge for the space to put the machine
adds an additional $4k per year. Scaling the purchase price by Moore’s Law, when the
machine is about 6 years old, it will cost more per year for power and space than the
value of the computation produced by the machine. This puts a clear upper limit on its
useful lifetime.

We have calculated the power consumption of our code on a variety of systems, and
offer the statistics in Table 2 by way of comparing the SS to other architectures. Note
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that the power efficiency of a bladed Transmeta cluster is superior to that of the Space
Simulator, but it does not scale to the same total performance [8].

Fig. 4. A smoothed representation of the temperature across the cluster obtained from the
lm sensors package on each node. The air conditioning unit is located on the left side of each
set of racks, with the intake at the bottom and the outflow at the top. The left edge of racks 1
& 2 and the left edge of racks 3, 4 & 5 are located equidistant from the AC, with their backs
facing inward. The cooler temperatures near the cold air are evident. A hot spot due to warm air
rising and limited convection on the right side of racks 3, 4 & 5 is also clearly seen. Note that the
absolute temperature scale shown here may be in error, since the data sheets for the sensors used
in our nodes are unavailable, and thus are not well supported by thelm sensors package. An in-
dependent measure of system temperatures is provided by reading the hard drive temperature via
smartctl. These temperatures range from 20-40 degrees C, and follow a similar spatial pattern

2.3 OS install

We used the PXE functionality of our NICs along withpxelinux and RedHat kickstart
to install Linux on each node. We encountered several problems during this process.

By default, 3Com NICs do not have PXE enabled. You are required to execute a
DOS utility to enable the card to do PXE. The only way to do that is to manually boot
DOS and run the utility. One of the tasks we specified that the reseller perform was to
do this process for each NIC. Out of the 294 nodes, about 10 were not PXE enabled.
They would fail during the OS install, which required us to remove the NIC and place
it in a machine with a floppy drive to execute the utility to enable PXE.

Second, bootp and DHCP requests would sometimes work, and sometimes fail.
These requests were issued several times during the install process, and would always
work when issued from the NIC, but usually fail during the intermediate stages when
issued from the RedHat installer. We determined that the problem was due to the span-
ning tree protocol in the network switch, which would cause these broadcast requests
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to time out if they were not given sufficient time to complete. Disabling spanning tree
in the switch fixed the problem.

The last problem was that we were unable to get pxelinux installs to work with
RedHat 8.0 (then in beta). RedHat 7.3 worked fine. A brief investigation was unable
to determine the problem, and it was decided that RedHat 7.3 would be sufficient. We
have since re-installed RedHat 9.0 on the whole cluster via pxelinux without a problem.

The use of pxelinux to boot has several advantages. One of the nicer features is the
ability to boot a variety of system images. We are able to boot the “memtest86” utility
directly over the network to verify memory problems, without the need for a floppy or
CD-ROM on each node. Additionally, we plan to use this functionality to upgrade the
BIOS on each node if it becomes necessary. Doing BIOS upgrades was really the only
reason to have a floppy disk on every node, so the ability to use pxelinux to boot a DOS
image over the network allowed us to dispense with the floppy drives on the SS.

The nodes are nameds00, s01, ..., s293, and the names are mapped to their
MAC address in/etc/dhcpd.conf. This map is generated by a perl script using the
diagnostic output of the ethernet switch, thereby allowing us to keep the topology of the
switch ports associated with the physical location of the nodes in the racks.

2.4 Reliability

In our experience, the component most likely to fail in a cluster are the fans. We expect
somewhat increased reliability from the SS cluster compared with our previous clusters,
since the CPU fan is eliminated by the heat pipe used in the Shuttle chassis.

During the installation of the cluster and the initial large Linpack benchmark runs
we identified the following defective hardware:

3 power supplies 6 disk drives 4 motherboards
6 sticks of DRAM 1 ethernet card

During the six month period since the initial failures, the following hardware has
failed:

2 power supplies 5 disk drives 1 motherboard
3 sticks of DRAM 1 fan connector loose

It is possible that the faulty DRAM and motherboard/CPU discovered after the ini-
tial installation was defective to begin with, but took longer to identify since the errors
were very infrequent. Additionally, there have been less than 10 “soft” node errors,
which resolved themselves, or did not occur again after the node was rebooted. One
perhaps interesting anecdote is that on every occasion where a node has failed with a
Linux kernel panic, the cause was traced to bad hardware.

The entire cluster has gone down on two occasions, once when the 120 kVa power
distribution unit for the machine room failed and had to be replaced, which resulted in
three days of down-time, and once during a power outage which lasted about 1 hour. On
several other occasions, 15-amp breakers on individual power strips tripped, necessitat-
ing a rebalancing of the power distribution using a slightly more conservative maximum
power consumption figure.
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Additionally, there have been 4 soft failures of ports on the ethernet switch which
were resolved by a power cycle of the switch.

3 Software Environment and Tools

Our basic philosophy has been “simpler is better” in terms of tools to manage parallel
machines. We have been quite productive using a stock RedHat installation, with the
addition of a message passing library such asMPICH or LAM (andLAM now comes with
RedHat), and the scripts and libraries in the subsections below. Some codes will benefit
from the architecture specific optimizations available with the Intel or Portland Group
C and Fortran compilers, but we have found software development and cluster man-
agement tools beyond that can often be more trouble than they are worth. In particular,
we have intentionally avoided installing software such as batch schedulers, since the
small user base on the Space Simulator machine can much more effectively manage the
resources by an exchange of e-mail.

3.1 Prsh

Prsh is a script developed by J. Salmon which implements a ”parallel” rsh. Prsh runs a
command on a list of remote processors with optional timeouts, output flushing, status
reports, etc. It is implemented with about 200 lines of perl. It has turned out to be
a tremendously powerful and flexible way to extend the usual UNIX command-line
interface across a parallel machine. A typical prsh command would be:

prsh -- uptime
This shows the uptime on nodes defined by the environment variablePRSH_NODES. The
last argument to prsh can be any valid command you would ordinarily give on the
command-line.ls, cp, shutdown, killall, date, etc.

A more explicit way to specify nodes may also be used:
prsh s00 s01 s02 s03 -- uptime

Typing machine names quickly becomes tiresome on a large machine, but another small
perl script comes to the rescue.sseq simply creates a string of node names. The exam-
ple above is equivalent toprsh ‘sseq 0 3‘ -- uptime, which is not much shorter
than the explicit command, butprsh ‘sseq 0 293‘ -- shutdown -h certainly is.

Prsh callsrsh asynchronously, so all commands execute in parallel. The prsh com-
mand in practice feels very responsive, with commands running across 288 SS proces-
sors completing in less than 2 seconds. prsh also can be told to use ssh as an option,
so all system maintenance commands are performed using ssh-agent authentication and
prsh from the front-end.

3.2 SWAMPI

Since about 1990 we have maintained a small message passing library which we have
used to run our parallel codes on networks of workstations. The library was initially im-
plemented with UDP, since UDP performance on the machines and operating systems at
that time was much superior to TCP performance. The library implemented only about
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10 basic communication functions, but those were sufficient to run our parallel codes,
since we believed (or soon discovered) that depending on anything beyond the basics
would not run reliably on most parallel machines.

With the discovery that Linux TCP bandwidth over fast ethernet was equivalent to
UDP performance, we were able to substantially simplify our simple message passing
library (since we no longer had to handle message sequencing and retries ourselves).
While doing this we also took the opportunity to align the code more closely with the
MPI standard. This rewrite was done during a couple of weeks in early 1997. This
library (named SWAMPI) is implemented in about 2000 lines of code, and implements
the 24 most commonly used MPI functions. This may be contrasted with many more
lines of code in the LAM [9] implementation and MPICH distribution [10]. Needless to
say, it is considerably easier to understand what is happening in 2000 lines of our own
code vs 100,000 of somebody else’s.

SWAMPI has been used on the SS, showing increased reliability and performance
over MPICH. Our more recent experiences with the LAM implementation of MPI
on the SS have shown that it in most cases matches or exceeds the performance of
SWAMPI, so SWAMPI’s interest to a more general audience is likely limited.

4 Benchmarks

In this section, we attempt to characterize the performance of the Space Simulator,
proceeding from micro-benchmarks of particular aspects of the architecture to more
general measurements. In particular, we try to provide a clear baseline for the measure-
ment of gigabit-ethernet connected clusters, and provide a basis for future comparison
with clusters connected via less mainstream technology. In particular, these benchmark
results can begin to point one in the right direction for answering questions like “Which
compiler is fastest?” and “Which MPI implementation should I use?”

4.1 Network Performance

Gigabit network performance varies dramatically depending on the particular NIC used
in the Shuttle systems. Some cards which had very good performance on a 64-bit or
66 MHz PCI bus performed poorly with the Shuttle 32-bit 33 MHz bus. We selected
the 3Com 3c996B-T cards based on testing a variety of cards on a prototype system.
The performance results are listed below using Linux 2.4.20. The 1.0 version of thetg3
driver that shipped with Linux 2.4.20 turned out to be significantly slower than earlier
versions, so the results below use the earlier 0.99 version.

In order to determine the behavior of the Foundry switch backplane, we wrote a
small MPI program which simultaneously sends messages between pairs of processors
along various hypercube edges. Within a 16-port switch module, the messages are non-
blocking. The capacity from one module to another is only 8 gigabits. We verified
that with 16 processors on one module sending to 16 modules on another module, the
total throughput was about 6000 Mbits. Further, since our overall switch is a trunked
combination of a Fastiron 1500 and a Fastiron 800, messages between the two switches
are limited by the 8 Mbit trunk. This limits the scaling of codes running on more than
about 256 processors.
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Fig. 5.We show bandwidth vs message size for a variety of message passing libraries as measured
via NetPIPE [11]. Several features are evident, showingmpich-1.2.5 has lower performance for
large messages than the rest of the libraries. The 0.92 beta release ofmpich2 has apparently solved
that problem. Also, usingLAM 6.5.9 with the-O flag (designating a homogeneous environment)
significantly improves performance. The highest bandwidth is obtained via plainTCP, achieving
779 Mbits/sec. The latencies for small messages range from 79 microseconds forTCP, to 83
microseconds forLAM, and 87 microseconds formpich-1.2.5 andmpich2-0.92

4.2 Memory Bandwidth

The node memory bandwidth is less than optimal for its 333 MHz frequency due to the
fact that the on-board video system uses the system DRAM for it’s frame buffer. It is
possible to disable the on-board VGA controller and increase memory copy bandwidth
by 14%, but you must then insert an AGP video card into the system in order for it to
boot.

Stream [12] results for the nodes in their normal configuration with a 4 MByte
shared VGA frame buffer are:

Function Rate (MB/s) RMS time Min time Max time
Copy: 1144.5249 0.0700 0.0699 0.0702
Scale: 1145.2130 0.0699 0.0699 0.0700
Add: 1262.9053 0.0951 0.0950 0.0951
Triad: 1265.4891 0.0949 0.0948 0.0949

4.3 Linpack

In contrast to commercial machines which use a variety of proprietary libraries and
compilers to obtain their peak performance, our Linpack benchmark result of 665.1
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Fig. 6. The Space Simulator ranks at #85 on the 20thTOP500 list of the fastest computers in the
world, as determined by the Linpack benchmark. Performance of 665.1 Gflop/s was obtained on
288 processors in October 2002. In April 2003, we obtained a higher figure of 757.1 Gflop/s
through the use of a slightly faster version of ATLAS and using LAM instead ofmpich. This
performance would have ranked the Space Simulator at #69 on the 20thTOP500 list. We believe
our results are the first example of a machine in theTOP500 with price/performance of better than
1 dollar per Mflop/s (we obtain 63.9 cents per Mflop/s, or $639 per Gflop/s)

Gflop/s was obtained using freely available software and commodity off-the-shelf hard-
ware. The OS (RedHat 7.3), kernel (Linux 2.4.20), message passing library (MPICH),
compiler (gcc 3.1.1), BLAS library (ATLAS) and the High Performance Linpack (HPL)
software are all freely available. This Linpack result ranks us as the 85th fastest com-
puter in the world on the November 2002TOP500 list [13].

=========================================================================
T/V N NB P Q Time Gflops
-------------------------------------------------------------------------
W25R2C4 180000 160 16 18 5845.59 6.651e+02
-------------------------------------------------------------------------
||Ax-b||_oo / ( eps * ||A||_1 * N ) = 0.0042969 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_1 * ||x||_1 ) = 0.0089214 ...... PASSED
||Ax-b||_oo / ( eps * ||A||_oo * ||x||_oo ) = 0.0014673 ...... PASSED
=========================================================================

In April 2003, the Linpack benchmarks were run again on 288 processors. Instead of
MPICH 1.2.4, we usedLAM 6.5.9 as the MPI implementation. In addition, the some-
what newerATLAS 3.5.0 distribution was used for the level 3 BLAS, and the Intel 7.1
compiler suite was used to compile HPL (while gcc was used for ATLAS). The signif-
icant improvement seen, from 665.1 Gflop/s to 757.1 Gflop/s, we believe was mostly
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due to the switch to LAM. The exact results of running the benchmark 8 times in a row
(which all passed the residual check) are as follows:

=========================================================================
T/V N NB P Q Time Gflops
-------------------------------------------------------------------------
W25R2C4 180000 160 16 18 5153.50 7.544e+02
W25R2C4 180000 160 16 18 5150.74 7.549e+02
W25R2C4 180000 160 16 18 5146.35 7.555e+02
W25R2C4 180000 160 16 18 5135.46 7.571e+02
W25R2C4 180000 160 16 18 5160.75 7.534e+02
W25R2C4 180000 160 16 18 5191.60 7.489e+02
W25R2C4 180000 160 16 18 5177.24 7.510e+02
W25R2C4 180000 160 16 18 5159.14 7.536e+02
=========================================================================

4.4 Gravity Kernel Performance

Execution time for our parallel N-body application is dominated by the force calculation
in the inner loop. We have collected performance figures on a variety of processors in
Table 4.4. The SS results correspond to the 2530-MHz Intel P4.

Table 3. Mflop/s obtained on our gravitational micro-kernel benchmark. The first column uses
the math librarysqrt, the second column uses an optimization by Karp [14], which decomposes
the reciprocal square root into a table lookup, Chebychev interpolation and Newton-Raphson
iteration, which uses only adds and multiplies. Note the significant improvement obtained through
the use of the Intel version 6.0 compiler, which enables the P4 SSE and SSE2 capabilities

Processor libm Karp

533-MHz Alpha EV56 76.2 242.2
667-MHz Transmeta TM5600128.7 297.5
933-MHz Transmeta TM5800189.5 373.2
375-MHz IBM Power3 298.5 514.4
1133-MHz Intel P3 292.2 594.9
1200-MHz AMD Athlon MP 350.7 614.0
2200-MHz Intel P4 668.0 655.5
2530-MHz Intel P4 779.3 792.6
1800-MHz AMD Athlon XP 609.9 951.9
1250-MHz Alpha 21264C 935.21141.0
2530-MHz Intel P4 (icc) 1170.01357.0

4.5 NAS parallel benchmarks

The results shown in Tables 4.5 and 4.5 use the NAS Parallel benchmarks version 2
[15]. These benchmarks, based on Fortran 77 and the MPI standard, are intended to
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approximate the performance a typical user can expect for a portable parallel program
on a distributed memory computer. All results use the Intel version 7.1 compilers with
FFLAGS = -O3 -tpp7 -xW -ipo -fno-alias andLAM 6.5.9 as the message pass-
ing library.

Table 4.NAS 2.4 benchmark performance per processor for runs ranging in size from 1 processor
to 289 processors. Some of this data is plotted in Figures 7 and 8

N BT SP LU MG
procs A B C D A B C D A B C D A B C D

1 331 217 221 410 413 419 392 416
2 397 406 408 373 396
4 304 311 181 190 209 389 397 401 327 349 404
8 452 371 383 308 333 389
9 280 296 304 140 178 195
16 265 280 296 158 160 180 458 415 369 271 287 360
25 266 270 287 169 127 168
32 360 440 352 242 254 329
36 252 263 279 151 119 102
49 238 236 272 127 108 144
64 227 210 266 106 98 122 172271 393 436 358214 225 267
81 227 192 260 29292 81 117 175
100 217 173 249 29173 77 107 173
121 213 166 250 28867 70 102 165
128 137 267 400 358124 144 246 344
144 177 174 247 28253 82 89 160
169 161 197 223 27548 77 85 154
196 133 157 198 27040 52 71 138
225 115 164 186 26434 56 75 96
256 72 123 160 246 24 37 62 114 61 166 299 318 44 48 72
289 37 135 247 13 16 41 110

5 Applications

5.1 N-body methods

N-body methods are widely used in a variety of computational physics algorithms
where long-range interactions are important. Several methods have been introduced
which allow N-body simulations to be performed on arbitrary collections of bodies in
time much less thanO(N2), without imposition of a lattice [16, 17]. They have in com-
mon the use of a truncated expansion to approximate the contribution of many bodies
with a single interaction. The resulting complexity is usually determined to beO(N)
or O(N logN), which allows computations using orders of magnitude more particles.
These methods represent a system ofN bodies in a hierarchical manner by the use of
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Table 5.NAS 2.4 benchmark performance per processor for runs ranging in size from 1 processor
to 256processors. Some of this data is plotted in Figures 7 and 8

N CG FT EP IS
procs A B C D A B C D A B C D A B C

1 298 58 343 12.6 12.7 27.90 26.44
2 239 106 52 233 12.6 12.6 12.6 13.90 13.65
4 161 110 50 202 209 12.6 12.6 12.6 10.60 10.71 10.48
8 117 134 101 178 189 12.6 12.6 12.6 6.15 8.84 9.11
16 76 89 76 142 172 193 12.6 12.6 12.6 2.68 6.20 7.71
32 45 67 85 77 155 159 12.4 12.6 12.6 12.60.85 3.01 5.75
64 24 38 51 23 61 118 154 12.2 12.5 12.6 0.35 0.78 3.62
128 14 32 38 29 5 84 151 12.1 12.4 12.5 12.60.24 1.08
256 4 14 9 19 5 21 79 8512.0 12.2 12.4 12.60.04 0.03 0.15

Fig. 7.Scaling of the NAS 2.4 Class D benchmarks on the Space Simulator. Perfect scaling would
be a straight horizontal line for the plot on the right. Data for this plot are contained in Tables 4
and 5
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Fig. 8. Scaling of the NAS 2.4 Class C benchmarks on the Space Simulator. The computational
problems are smaller than the Class D results shown in the previous plot, so the scaling is not as
good for large numbers of processors. The feature in the plot for theLU benchmark (where the
performance per processor becomes more higher on 64 processors than on a single processor)
is likely due to the problem being divided into enough pieces that it fits into L2 cache on the
processor

a spatial tree data structure. Aggregations of bodies at various levels of detail form the
internal nodes of the tree (cells). These methods obtain greatly increased efficiency by
approximating the forces on particles. Properly used, these methods do not contribute
significantly to the total solution error. This is because the force errors are exceeded by
or are comparable to the time integration error and discretization error.

Using a generic design, we have implemented a variety of modules to solve prob-
lems in galactic dynamics [18] and cosmology [19] as well as fluid-dynamical problems
using smoothed particle hydrodynamics [20], a vortex particle method [21] and bound-
ary integral methods.

5.2 The Hashed Oct-Tree Library

Our parallel N-body code has been evolving for over a decade on many platforms. We
began with an Intel ipsc/860, Ncube machines, and the Caltech/JPL Mark III [22, 18].
This original version of the code was abandoned after it won a Gordon Bell Performance
Prize in 1992 [23], due to various flaws inherent in the code, which was ported from a
serial version. A new version of the code was initially described in [24].

The basic algorithm may be divided into several stages. Our discussion here is nec-
essarily brief. First, particles are domain decomposed into spatial groups. Second, a dis-
tributed tree data structure is constructed. In the main stage of the algorithm, this tree is
traversed independently in each processor, with requests for non-local data being gener-
ated as needed. In our implementation, we assign aKey to each particle, which is based
on Morton ordering. This maps the points in 3-dimensional space to a 1-dimensional
list, which maintaining as much spatial locality as possible. The domain decomposition
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Table 6.Historical Performance of Treecode

Year Site Machine ProcsGflop/sMflops/proc

2003 LANL ASCI QB 3600 2793 775.8
2003 LANL Space Simulator 288 179.7 623.9
2002NERSCIBM SP-3(375/W) 256 57.70 225.0
2002 LANL Green Destiny 212 38.9 183.5
2000 LANL SGI Origin 2000 64 13.10 205.0
1998 LANL Avalon 128 16.16 126.0
1996 LANL Loki 16 1.28 80.0
1996 SC ’96 Loki+Hyglac 32 2.19 68.4
1996 Sandia ASCI Red 6800 464.9 68.4
1995 JPL Cray T3D 256 7.94 31.0
1995 LANL TMC CM-5 512 14.06 27.5
1993 Caltech Intel Delta 512 10.02 19.6

is obtained by splitting this list intoNp (number of processors) pieces (see Figure 9).
The implementation of the domain decomposition is practically identical to a parallel
sorting algorithm, with the modification that the amount of data that ends up in each
processor is weighted by the work associated with each item.

The Morton ordered key labeling scheme implicitly defines the topology of the tree,
and makes it possible to easily compute the key of a parent, daughter, or boundary cell
for a given key. A hash table is used in order to translate the key into a pointer to the
location where the cell data are stored. This level of indirection through a hash table can
also be used to catch accesses to non-local data, and allows us to request and receive
data from other processors using the global key name space. An efficient mechanism
for latency hiding in the tree traversal phase of the algorithm is critical. To avoid stalls
during non-local data access, we effectively do explicit “context switching” using a
software queue to keep track of which computations have been put aside waiting for
messages to arrive. In order to manage the complexities of the required asynchronous
message traffic, we have developed a paradigm called “asynchronous batched messages
(ABM)” built from primitive send/recv functions whose interface is modeled after that
of active messages.

All of this data structure manipulation is to support the fundamental approximation
employed by treecodes:

∑
j

Gmjdi j

|di j |3
≈

GMdi,cm

d3
i,cm

+ . . . , (1)

wheredi,cm = xi − xcm is the vector fromxi to the center-of-mass of the particles that
appear under the summation on the left-hand side, and the ellipsis indicates quadrupole,
octopole, and further terms in the multipole expansion. The monopole approximation,
i.e., Eqn. 1 with only the first term on the right-hand side, was known to Newton, who
realized that the gravitational effect of an extended body like the moon can be approx-
imated by replacing the entire system by a point-mass located at the center of mass.
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Fig. 9. On top is the self-similar curve used for load-balancing, while the lower figure represents
a tree data structure in 2d for a group of centrally condensed particles
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Effectively managing the errors introduced by this approximation is the subject of an
entire paper of ours [25].

In Table 6 we show the performance of the Space Simulator on a standard simulation
problem which we have run on most of the major supercomputer architectures of the
past decade. The problem is a spherical distribution of particles which represents the
initial evolution of a cosmological N-body simulation. Overall, the performance of the
full Space Simulator cluster is similar to that of 256 processors on ASCI Q, or a 1024
processor SP-3.

5.3 Cosmology Simulations

Fig. 10. The figure represents a portion of the Universe about 125 Megaparsecs on a side at a
redshift of 0.3, or an age of 3.5 billion years prior to the present epoch. The overall simulation of
about 700 timesteps used 134 million particles, and was completed in a single run of just over 24
hours on 250 processors of the Space Simulator. 1.5 Terabytes of data from this simulation was
saved

Obtaining a quantitative understanding of galaxy formation and clustering is the
most important open theoretical problem in the study of the large-scale structure of the
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Universe. Observations strongly support the theoretical paradigm that structure evolves
through gravitational collapse of primarily dark matter. The revolutionary transforma-
tion of cosmology from a qualitative to a quantitative science has occurred over just the
last fifteen years. Driven by a powerful and diverse suite of observations, the parameters
describing the large-scale Universe are now known to extraordinary precision.

Structure in the Universe forms almost entirely due to the gravitational collapse of
primordial density fluctuations. On the very largest scales, such as those characteristic
of the microwave background, linear theory is applicable; with the addition of a small
amount of thermodynamics and linearized gas dynamics, a quantitative understanding
has been achieved. At smaller scales, the essential nonlinearity of gravitational collapse
makes such an understanding much harder to attain. In this regime, the distribution of
matter can be studied only via large scale N-body simulations.

Our recent N-body simulations have achieved unprecedented spatial and mass res-
olution. Simulations at this resolution allow us to examine the sub-structure of dark
matter halos and approach the problem of galaxy formation in a very direct way, possi-
bly resolving many of the problems posed by bias, both in galaxy position and velocity
fields. We are currently performing several 134 million particle cosmological N-body
simulations per week on the Space Simulator, and have mostly completed a run with
over 1 billion particles. Even larger simulations are possible using the out-of-core ver-
sion of our code [26].

5.4 Core-Collapse Supernovae

Core-collapse supernovae play a vital role in nearly every aspect of astronomy both as
major sources of the emission of gamma-rays, neutrinos and gravitational waves to the
chemical enrichment of the universe and the formation of compact objects (black holes,
neutron stars, quark stars). These explosions are driven by neutrinos emitted from the
collapsed core of a massive star. Studying core-collapse supernovae requires the cou-
pling of gravitational and pressure forces of the core as it collapses down to nuclear
densities with the radiation effects from neutrinos — a true radiation/hydrodynamics
problem. The combination of radiation transport and the complex description of pres-
sure forces for matter at nuclear densities pose difficulties both in optimization and mes-
sage passing. In addition, these simulations must be run for 0.1-0.2 million timesteps.
Because of these difficulties, nearly all previous simulations of these events have been
limited to 2-dimensions.

Fryer, Warren and collaborators have performed the first ever full-physics three-
dimensional simulations of supernova core-collapse [27] as part of the DOE SCIDAC
Supernova Science Centerhttp://www.supersci.org. By implementing the smooth
particle hydrodynamics formalism onto the tree structure described above for N-body
studies, we have been able to include both the essential physics and a flux-limited dif-
fusion algorithm to model the neutrino transport. The largest simulation using 5 mil-
lion particles was finished recently, and required roughly one month of time to model
100,000 timesteps on a 256 processors of the ASCI Q system. Taking advantage of the
Lagrangian nature of smooth particle hydrodynamics, we have begun to study global as-
phericities in core-collapse: rotation (Figs. 11, 12) and asymmetric collapse (Fig. 13).
These 3-dimensional simulations allow us to address a number of outstanding questions
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in core-collapse astrophysics such as the origin of neutron star kicks and the gravita-
tional wave signal for stellar collapse (Fig. 13).

We are currently performing several follow-up simulations on the Space Simulator.
For our 1 million particle simulations on 128 processors, per processor performance
(using gcc/g77) is about 1/2 that of the ASCI Q system. We are running several simu-
lations using 32 processors out to 150,000 timesteps. These simulations take roughly 4
months. Performance tuning remains to be done, especially investigating the use of the
Intel 7.0 compilers.

6 Conclusion

Beowulf clusters have proven to be an effective computing resource in many apppli-
cation areas. We have demonstrated that commodity PC technology coupled with the
latest generation of high-volume ethernet technology is capable of supercomputer-class
performance. It is interesting to note there have been exactly six years between the com-
pletion of the Loki and Space Simulator clusters, which results in four “Moore’s Law”
doublings. Comparing the Loki architecture and price in Table 7 to the Space Simula-
tor, we can see that Moore’s Law scaling has actually been greatly exceeded in some
aspects of the architecture. For instance, in 1996, Loki’s disks cost $111 per Gigabyte.
For the SS, they are close to $1 a Gigabyte, which is a factor of seven beyond the factor
of 16 from Moore’s Law over six years. For memory, in the Loki days it was $7.35 per
Megabyte, and is now 23 cents per Megabyte, 2x lower than Moore’s Law would have
predicted.

Qty. Price Ext. Description

16 595 9520Intel Pentium Pro 200 Mhz CPU/256k cache
16 15 240 Heat Sink and Fan
16 295 4720Intel VS440FX (Venus) motherboard
64 235 150408x36 60ns parity FPM SIMMS (128 Mb per node)
16 359 5744Quantum Fireball 3240 Mbyte IDE Hard Drive
16 85 1360D-Link DFE-500TX 100 Mb Fast Ethernet PCI Card
16 129 2064SMC EtherPower 10/100 Fast Ethernet PCI Card
16 59 944 S3 Trio-64 1Mb PCI Video Card
16 119 1904ATX Case
2 4794 95883Com SuperStack II Switch 3000, 8-port Fast Ethernet

255 Ethernet cables
Total $51,379 $3211 per node 200 Mflop/s peak per node

Table 7.Loki architecture and price (September, 1996).

These factors of improvement over Moore’s Law are realized in the NPB perfor-
mance results. Loki 16-processor performance on the NPB class B benchmarks was
355, 255, 428 and 296 Mflops for BT, SP, LU and MG respectively. For the SS, the
corresponding 16-processor class B figures are 4480, 2560, 6640 and 4592, resulting in
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improvement ratios of 12.6, 10.0, 15.5 and 15.5. Since each SS processor cost only half
as much as the Loki nodes, we see that for a given cost the NPB performance exceeds
Moore’s Law scaling by 25% for BT, and close to a factor of two for LU and MG.

For the N-body code, the overall price/performance improvement that clusters have
obtained over the past six years has not differed much from Moore’s Law extrapolations.
Loki obtained performance of 1.28 Gflop/s for for the N-body code, while the whole
SS obtains 180 Gflops, an improvement of a factor of 140. The price ratio between
the machines is 9.4, which when multiplied by 16 for four 18-month Moore’s Law
doublings, results in a ratio of 150. By hand coding our inner loop with SSE instructions,
we hope to be able to reach 2x higher performance with our N-body code, however.

Overall, the Space Simulator provides a reliable computing resource with unbeat-
able price/performance for our applications. It is fortunate that the niche of small, quiet
computers that Shuttle targeted with the Shuttle XPC series was quite well suited to the
architecture of the latest generation of Beowulf clusters.
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Fig. 11. This image shows the radial velocities of material in a 0.5◦ slice across the core of
a rotating supernova just before the the core bounces. By angular slice of 0.5◦, we mean:
|y|/

√
x2 +y2 +z2 < sin0.5◦. The colors denote radial velocity and the vectors denote velocity

direction and magnitude (vector length). The material in the equator (x-axis) is slowed by cen-
trifugal forces and hence has a slower infall velocity than the material in the poles. Although
2-dimensional models could study such axisymmetric collapses, the point of interest (along the
rotation axis) coincided with the symmetry axis of the code, leading many to doubt the quanti-
tative results of such 2-dimensional simulations. 3-dimensional simulations are required to study
the true effects of rotation
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Fig. 12. This image shows the angular momentum distribution a 0.5◦ slice across the core of a
rotating supernova 40 ms after the core bounces. The colors denote the specific angular momen-
tum of the material and the vectors show velocity direction and magnitude (vector length). Note
that the bulk of the angular momentum lies along the equator (the angular momentum in the a
15◦ cone along the poles is 2 orders of magnitude less than that in the equator). The specific an-
gular momentum in the equator over 1016cm2s−1 corresponding to a rotation velocity of nearly
5000kms−1 and a rotational period of 250 ms. This angular momentum causes the star to deviate
from spherical symmetry, leading to the emission of gravitational waves
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Fig. 13.This image shows the entropy of an asymmetric collapse model 100 ms after the stellar
core bounces. The low entropy (blue/green) material flows down onto the neutron star while the
high entropy (red) material bubbles upward. The black circle shows the proto-neutron star. Note
that the asymmetry in collapse has caused the neutron star to accelerate and move of the center of
collapse. Neutron stars are observed to be moving very fast through the universe (∼ 500km s−1)
and it is assumed that some asymmetry in the explosion (possibly induced by an asymmetric
collapse) produces ”kicks” these neutron stars
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Fig. 14. This image shows the gravitational wave strain for our rotating model assuming the
supernova occurs 10 Mpc away from the earth. It is the strain that determines the detectability of
these explosions by gravitational waves. Although not detectable at 10 Mpc, a galactic supernova
would produce a strong signal in the advanced LIGO gravitational wave detector. Gravitational
waves are one of the only ways to study the cores of massive stars, and the probably the best way
to observe the rotation of these cores


